Part number	**Designation**	**Qty**
1 | Shaft | 1
2 | Internal ring | 1
3 | Housing | 1
4 | Seal holder | 1
5 | Spring retaining ring | 1
6 | Lip seal | 1
7 | O-ring | 1
8 | Roller bearing | 1
9 | Tapered bearing | 1
10 | Retainer ring | 1
11 | Shim | 1
12 | Ball pivot | 1
13 | Belleville spring washer | 4
14 | Washer | 1
15 | Barrel equipped for speed sensor | 1
16 | O-ring | 1
17 | Back cover | 1
18 | Guide | 1
19 | Screw | 4
20 | Nord Lock washer | 4
21 | Retainer ring | 1
22 | Needle bearing | 2
23 | Spacer | 1
24 | Stop pin | 1
25 | Distribution plate | 1
26 | Piston ring | 7
27 | Piston | 7
28 | Plastic plug | 1
29 | Steel plug | 1
35 | Speed sensor | 1
45 | Retainer ring | 1
Exploded view / Part list for MSI series:

<table>
<thead>
<tr>
<th>Part number</th>
<th>Designation</th>
<th>Qty / motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shaft</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Internal ring</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Circlips</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Lip seal</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>O-ring</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Roller bearing</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Tapered bearing</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Retainer ring</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Washer</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Barrel</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>O-ring</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Nord Lock washer</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>Retainer ring</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Needle bearing</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>Shim</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Distribution plate</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Piston ring</td>
<td>7</td>
</tr>
<tr>
<td>27</td>
<td>Piston</td>
<td>7</td>
</tr>
<tr>
<td>29</td>
<td>O-ring</td>
<td>1</td>
</tr>
</tbody>
</table>
2: Changing seals:

Front seals 6&7:
1/ Remove the spring retaining ring 5.
2/ Remove the seal holder 4. Use 2 levers or screwdrivers inside the groove (in red) to remove it. (if your motor is a keyed shaft motor take care to remove the key first).
Then remove the retainer ring 45.
3/ Replace the seals 6 and 7 with new ones. Apply grease on the seals before assembly.
4/ Install the retainer ring 45. Then install the seal holder on the motor. Be careful the seal 7 has to pass over the spring retaining groove without being damaged.
5/ Lock the system with a new spring retaining ring.

Back seal 16:
1/ Unscrew the 4 bolts 19. Be careful: the cover has to be reassembled in the same position.
2/ Remove the cover. It is preferable to do this operation with the motor in vertical position.
3/ Replace the seal 16 with a new one. Put grease in the groove to keep the seal in position.
4/ Change the 4 NORD LOCK rings 20 and close the motor with the 4 bolts 19 respecting the following torques:
5 to 18cc : 3 da.Nm (22 lb.ft)
25 to 125cc : 10 da.Nm (74 lb.ft)
160 to 180cc : 28 da.Nm (2006 lb.ft)
3: Replacing distribution plate:

1/ Unscrew the 4 bolts 19. Be careful: the cover has to be reassembled in the same position.
2/ Remove the cover. It is preferable to do this operation with the motor in vertical position.

3/ Replace the distribution plate 25. Take care to:
 - Position the distribution plate correctly with the stop pin (in red figure 5).
 - Position the distribution plate as in figure 4 (side with the long slot against the barrel).

4/ Change the 4 NORD LOCK rings 20 and close the motor with the 4 bolts 19 respecting the following torques:
 - 5 to 18cc : 3 da.Nm (22 lb.ft)
 - 25 to 125cc : 10 da.Nm (74 lb.ft)
 - 160 to 180cc : 28 da.Nm (206 lb.ft)
4: Disassembly / Assembly:

Disassembly process:

1 - Clean the motor and mark the rear cover 17 and the housing 3 (Pay attention: the cover has to be reassembled in the same position). Then remove the plug or protection on the port of the motor + bleed the motor of the hydraulic oil.

2 - Put the motor in a bench clamp with the drive shaft in front of you. Look at Fig.1.

3 - Remove the keyed on the drive shaft (only for keyed shaft version) + protect the drive shaft (with tape for example). Look at Fig.2.

4 - Remove the retainer ring 5 with an internal plier. Look at Fig.3.

5 - Remove slowly the lip seal holder 4 by using two flat screw drivers. Look at Fig.4.
6 - Remove the retainer ring 10 with an external plier +
remove the shim 11 located behind the retainer ring.
Look at Fig.5.

7 - Return the motor on the bench clamp, remove the
warranty screw plug and loosen the four fixing screws 19.
Look at Fig.6.

**Warning: Removing the warranty plug will void any
warranty!**

8 - Lift off the back cover 17 from the housing + take care of
the locating pin.
Look at Fig.7.

9 - Remove the distribution plate and make a visual
inspection of the plate and back cover.
Look at Fig.8.
10 - Pull slowly the cylinder barrel 15. Look at Fig.9.

11 - Lift off the central ball joint with its 4 Belleville washers 13 and ring 14. Look at Fig.10.

Be sure you pulled the complete ball joint assembly (6 pieces assy') as below:

12 - Remove the seven pistons 27 from the shaft. You may have to turn the shaft to be able to align the piston and the shaft for an easy extraction. Look at Fig.11.

13 - Check for any scratches or damages on the piston rings 26 and pistons heads. Look at Fig.12.
14 - Using an hydraulic press, remove the drive shaft from the housing. Look at Fig.13.

Be Sure the shaft is properly aligned with the press.

15 - Reverse the inner ring of the roller bearing 8, we will use it to remove this roller bearing. Look at Fig.14.

16 - Tap down the outer ring of the roller bearing 8 with a soft rod tool. Look at Fig.15.

17 - Tap down the outer ring of the tapered bearing 9 with a soft rod tool. Look at Fig.16.
18 - Make a complete inspection of all components:
 - Inspect all sealing surfaces.

Valve plate:
- No scratch
- No wear
- No shock
- No cavitation traces

Cylinder barrel:
- No scratch
- No wear
- No shock

Back cover:
- No scratch
- No wear
- No shock
- No cavitation traces
Ball joint:
- No wear
- No shock

Pistons:
- No scratches
- No wear
- Piston ring not damaged

Drive shaft end:
- No fretting
- No wear

Drive shaft (lip seal):
- No wear
- No scratch

Piston/drive shaft:
- Axial play limited
Reassembly process:

1 - **Shaft:** If you use the same shaft, remove all remaining trace of glue and apply new glue (LOCTITE® 603 or equivalent) on the red section of the shaft (figure n°1). Heat the bearing (80-90°C) and assemble without strain. Look at Fig 1.

2 - **Housing:** If you use the same housing, remove all remaining trace of glue and apply new glue (LOCTITE® 603 or equivalent) on the red part (figure n°2). Heat the housing (80-90°C) and assemble the bearing without strain. Look at Fig 2.

3 - Install the O-ring 11 and apply some grease on it. Look at Fig.3.

4 - Put the valve plate 10 and the locking pin 24 in the correct position. Look at Fig.3.

5 - Put some oil onto the valve plate and then mount the cylinder barrel on the rear cover. Look at Fig.4.
6 - Install the ball joint assembly with the 4 spring washer onto the cylinder barrel.
Pay attention: at the position of the spring washer, look at the Fig.5.

7 - Put some hydraulic oil into the piston head seats and install the 7 pistons on the drive shaft. Insure a smooth rotation for each piston. Look at Fig.6.

8 - Install the drive shaft equipped with the pistons into the cylinder barrel. Fig.7.
Pay attention: that the pivot ball 7 has to be mounted properly.

9 - Mount the housing like Fig.8.
Pay attention: Use the sign made during disassembling (step 1 of the disassembling process) to reassemble the housing and rear cover in the exact same position.
10 - Close the motor with the four fixing screws; replace the four Nord-Lock washers if necessary. Then tighten in cross respecting the following torque:
Look at Fig.9.

- 5 to 18 cc: 3 da.Nm (22 lb.ft)
- 25 to 125 cc: 10 da.Nm (74 lb.ft)
- 160 to 180 cc: 28 da.Nm (206 lb.ft)

11 - Heat the inner ring of the roller 8 bearing and assemble it on the shaft without stress. (It is important not to apply any axial stress on the shaft during this operation). Look at Fig.10.

12 - If the bearings or the shaft have been replaced, you will have to adjust axial play of the motor with a new shim 11.
To do so:

- Measure the distance “a” (figure n°11)
- Measure the thickness of the retainer ring 10 named “b”.
- Machine a spacer with a thickness = (a-b) +/-0.05 mm
- Mount the shim 11 on the drive shaft and then the retainer ring 10 with an external plier. Fig.12.

If the shaft or the bearing are original, you can use the existing shim 11.
15 - Replace the seals 6 and 7 with new ones. Apply grease on the O-ring as well as the lip of the shaft seal before assembly. Look at Fig.13.

16 - Install the retainer ring 45. Then install the lip seal holder on the motor. **Be careful**: the seal 7 has to pass over the spring retaining groove without being damaged. Look at Fig.13.

17 - Lock the system with a new retainer ring 5. Look at Fig.13.
5: Motor testing:

<table>
<thead>
<tr>
<th>Speed (rpm)</th>
<th>Pressure (psi)</th>
<th>Measurement</th>
<th>Speed (rpm)</th>
<th>Pressure (psi)</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0</td>
<td>Drain flow (Qd0) Inlet flow (Qi0)</td>
<td>1000</td>
<td>0</td>
<td>Drain flow (Qd0) Inlet flow (Qi0)</td>
</tr>
<tr>
<td>1000</td>
<td>4350</td>
<td>Drain flow (Qd300) Inlet flow (Qi300)</td>
<td>1000</td>
<td>4350</td>
<td>Drain flow (Qd300) Inlet flow (Qi300)</td>
</tr>
</tbody>
</table>

The motor conforms if the volumetric efficiency is minimum 95%, that is:

\[
\frac{Qi300 - Qd300}{Qi0 - Qd0} > 0.95 \text{ minimum}
\]

Note: In normal cases, \(Qd0 \approx 0 \) and \(Qi0 \) = motor displacement at 1000 rpm.
6: Speed sensor option:

If hydraulic motor equipped with pre-disposition only:

<table>
<thead>
<tr>
<th>Part number</th>
<th>Reference</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>093459</td>
<td>Plug for speed sensor</td>
</tr>
<tr>
<td>36</td>
<td>120602</td>
<td>Screw M6</td>
</tr>
<tr>
<td>37</td>
<td>1411120</td>
<td>O-ring FKM</td>
</tr>
<tr>
<td>44</td>
<td>173576</td>
<td>Washer</td>
</tr>
</tbody>
</table>

The screw 36 is tightened at 3 da.Nm (2.23 lb.ft)

If hydraulic motor equipped with speed sensor:

<table>
<thead>
<tr>
<th>Part number</th>
<th>Reference</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>093327</td>
<td>Speed sensor</td>
</tr>
<tr>
<td>36</td>
<td>122035</td>
<td>Screw M6</td>
</tr>
<tr>
<td>44</td>
<td>173576</td>
<td>Washer</td>
</tr>
</tbody>
</table>
• Datasheet for the speed sensor 093327:

The Hydro Leduc speed sensors ref 093327 are suitable, in conjunction with a pole wheel, for generating a square wave signal proportional to rotary speed and a direction indicating signal. They have a static behavior, so that pulse generation is guaranteed down to a speed corresponding to a frequency of 0 Hz. The sensing element is a magnetically biased differential Hall Effect semiconductor. The differential structure requires that the sensor must be oriented. The sensor has a flange for proper installation.

- Number of teeth on the gear wheel of the barrel for each displacement and model of motor:

<table>
<thead>
<tr>
<th>M series motor models:</th>
<th>MA series motor models:</th>
<th>MSI series motor models:</th>
<th>Number of teeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>MA 10 - 12 - 18</td>
<td>MAI 28 - 32 - 41</td>
<td>26</td>
</tr>
<tr>
<td>M 12 - 18</td>
<td>MA 10 - 12 - 18</td>
<td>MAI 28 - 32 - 41</td>
<td>30</td>
</tr>
<tr>
<td>M 45 - 50 - 63</td>
<td>MA 45 - 50 - 63</td>
<td>MAI 50 - 63</td>
<td>39</td>
</tr>
<tr>
<td>M 80 - 90 - 108</td>
<td>MA 80 - 90</td>
<td>MAI 80 - 90 - 108</td>
<td>44</td>
</tr>
<tr>
<td>M 108R - 125</td>
<td>MA 108R - 125</td>
<td>MAI108R - MAI 125</td>
<td>64</td>
</tr>
<tr>
<td>M 160 - 180</td>
<td>MA 160 - 180</td>
<td>MAI 160 - 180</td>
<td>68</td>
</tr>
</tbody>
</table>
7: **Flushing valve option:**

Kit to plug the back cover if you remove the flushing valve:

<table>
<thead>
<tr>
<th>Part number</th>
<th>Reference</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>120602</td>
<td>Screw M6</td>
</tr>
<tr>
<td>39</td>
<td>130303</td>
<td>Bonded seal</td>
</tr>
<tr>
<td>40</td>
<td>181035</td>
<td>Plug M8</td>
</tr>
<tr>
<td>41</td>
<td>1303311</td>
<td>Bonded seal</td>
</tr>
</tbody>
</table>

Standard flushing valve:

<table>
<thead>
<tr>
<th>Part number</th>
<th>Reference</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>VBS_091180</td>
<td>Flushing valve</td>
</tr>
<tr>
<td>13</td>
<td>120805</td>
<td>Screw M8</td>
</tr>
</tbody>
</table>
The screws 13 and 40 are tightened at 3 da.Nm (22 lb.ft)
The screw 38 is tightened at 1.5 da.Nm (11 lb.ft)

- Functioning of the flushing valve VBS_091180:

The flushing valve is used to remove an oil flow from the circuit and to ensure that a minimum boost pressure is present (opening pressure 12 bar is fixed) for the application of hydrostatic transmission.

The flushing valve is equipped with a nozzle to control the oil flow to remove (the flow rate will depend of ΔP). Below is an example of the flushing for a M63 in function of the pressure in the return line.

Currently we have three models of VBS with different setting:
- VBS_091180: Flushing flow of 4.25l/min with ΔP of 25 bar
- VBS_095230: Flushing flow of 17l/min with ΔP of 25 bar
- VBS_095425: Flushing flow of 10l/min with ΔP of 25 bar
• The procedure to modify the flushing flow:

- Remove the plug #6.
- Extract the guide #12 & the spring #11.
- Extract the part to modify #10
- This part has a radial hole ID 1.3mm (0.05"").
 This hole allow a flow about 4.25l/min (1.12GPM) with a 25b (360 psi) differential pressure.
- To increase the flow, this hole needs to be enlarged:
 Ex: for 10l/min / 2.5GPM, the hole has to be 2mm diameter.
 Warning: maximum flow 17l/min / 4.5GPM with 25 bar / 360 psi delta P.
 Please contact Hydro Leduc technical department for any flow.
- Clean the part #10 after modification and lubricate it before assembling.
- Install the spring #11 & the guide #12.
- Screw & tighten the plug #6 with 2 m.daN torque (14 lb.ft).
8: Anti-cavitation valve option:

This valve integrated inside the back cover has been developed mainly for fan application, to avoid cavitation when the motor become pump. This valve can be used for CW or CCW rotation.

- The procedure to change of rotation the anti-cavitation valve:
 - For the motor with displacement 25-32 and 41:

To change the direction of rotation, you must swap the check valve of side (see below the position of the check valve in function of the direction of rotation wished)

The plug 42 is tightened at 5 da.Nm (36 lb.ft)
The plug 43 is tightened at 8 da.Nm (59 lb.ft)
For the motor with displacement 45-50-63-80:

To change the direction of rotation, you must turn the back cover. Remove the four screws and turn the back cover about half a turn while making sure it stays in contact with the cylinder barrel and valve plate. Re-fit the four screws and torque to 100Nm.

The four screws are tightened at 10 da.Nm (74 lb.ft)